Electrodeposited Magnesium Nanoparticles Linking Particle Size to Activation Energy

نویسندگان

  • Chaoqi Shen
  • Wei-Chiang Hong
چکیده

The kinetics of hydrogen absorption/desorption can be improved by decreasing particle size down to a few nanometres. However, the associated evolution of activation energy remains unclear. In an attempt to clarify such an evolution with respect to particle size, we electrochemically deposited Mg nanoparticles on a catalytic nickel and noncatalytic titanium substrate. At a short deposition time of 1 h, magnesium particles with a size of 68 ± 11 nm could be formed on the nickel substrate, whereas longer deposition times led to much larger particles of 421 ± 70 nm. Evaluation of the hydrogen desorption properties of the deposited magnesium nanoparticles confirmed the effectiveness of the nickel substrate in facilitating the recombination of hydrogen, but also a significant decrease in activation energy from 56.1 to 37.8 kJ·mol−1 H2 as particle size decreased from 421 ± 70 to 68 ± 11 nm. Hence, the activation energy was found to be intrinsically linked to magnesium particle size. Such a reduction in activation energy was associated with the decrease of path lengths for hydrogen diffusion at the desorbing MgH2/Mg interface. Further reduction in particle size to a few nanometres to remove any barrier for hydrogen diffusion would then leave the single nucleation and growth of the magnesium phase as the only remaining rate-limiting step, assuming that the magnesium surface can effectively catalyse the dissociation/recombination of hydrogen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and study of co-doped zinc oxide nanoparticles with copper, magnesium, calcium, and cobalt ions by microemulsion method

In the present study, zinc oxide nanoparticles were synthesized by simultaneous doping of Zn0.98Cu0.02O with Ca2+, Mg2+, and Co2+ ions using the microemulsion method. The phase, crystallization, and particle size of samples were identified by X-ray diffraction (XRD) analysis. The formation of the desired phase was confirmed by, X-ray diffraction. Also, the infrared spectrum (Far-FTIR) was confi...

متن کامل

Particle size dependence on oxygen reduction reaction activity of electrodeposited TaO(x) catalysts in acidic media.

The size dependence of the oxygen reduction reaction activity was studied for TaO(x) nanoparticles electrodeposited on carbon black for application to polymer electrolyte fuel cells (PEFCs). Compared with a commercial Ta2O5 material, the ultrafine oxide nanoparticles exhibited a distinctively high onset potential different from that of the bulky oxide particles.

متن کامل

Effect of Some Synthetic Parameters on Size and Polydispersity Index of Gelatin Nanoparticles Cross-Linked by CDI/NHS System

In our previous work, the effect of use of a water soluble CDI/NHS system as nontoxic cross-linking agent on fabrication of gelatin nanoparticles was investigated. In this research, the effect of variation in some synthetic parameters of gelatin nanoparticles cross-linked by CDI/NHS system such as type of gelatin and formulation of cross- linking agent on their size and distribution was examine...

متن کامل

Effect of Magnesium Doping on the Optical and Electrical Properties of Cd- Se Quantum Dots

Present study reports that Cd-Se nanoparticles with zinc blende structure allow Magnesium (Mg) Doping. Size tunable pure Cd-Se and Mg doped Cd-Se nanocrystal quantum dots were synthesized by inverse micelles technique. Paraffin oil and oleic acid were used as a solvent and surfactant respectively. Reduction in particles size with increase in Mg content is estimated from X-ray diffraction (XRD) ...

متن کامل

ReaxFF(MgH) reactive force field for magnesium hydride systems.

We have developed a reactive force field (ReaxFF(MgH)) for magnesium and magnesium hydride systems. The parameters for this force field were derived from fitting to quantum chemical (QM) data on magnesium clusters and on the equations of states for condensed phases of magnesium metal and magnesium hydride crystal. The force field reproduces the QM-derived cell parameters, density, and the equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016